Medicinal properties of neem leaves: a review.

August 24, 2010 by  
Filed under All, Herbs, Natural Healthcare, Science

The following review gives information on the neem plant.  Neem has a wide variety of medicinal usages as the article points out.

Azadirachta indica, commonly known as neem, has attracted worldwide prominence in recent years, owing to its wide range of medicinal properties. Neem has been extensively used in Ayurveda, Unani and Homoeopathic medicine and has become a cynosure of modern medicine. Neem elaborates a vast array of biologically active compounds that are chemically diverse and structurally complex. More than 140 compounds have been isolated from different parts of neem. All parts of the neem tree- leaves, flowers, seeds, fruits, roots and bark have been used traditionally for the treatment of inflammation, infections, fever, skin diseases and dental disorders. The medicinal utilities have been described especially for neem leaf. Neem leaf and its constituents have been demonstrated to exhibit immunomodulatory, anti-inflammatory, antihyperglycaemic, antiulcer, antimalarial, antifungal, antibacterial, antiviral, antioxidant, antimutagenic and anticarcinogenic properties. This review summarises the wide range of pharmacological activities of neem leaf.

nvestigation of the tuber constituents of maca (Lepidium meyenii Walp.).

August 16, 2010 by  
Filed under All, Herbs, Science

The information below gives us information on the currently popular herb, Lepidium meyennii, Maca.

Lepidium meyenii, known in South America as maca, has received attention worldwide as a powerful energizer that improves physical and mental conditions and increases fertility. Because of these reports, we investigated the secondary metabolites of the tuber of maca. The methanol extract of the tuber of maca contained, in addition to free sugars and amino acids, the following: uridine, malic acid and its benzoyl derivative, and the glucosinolates, glucotropaeolin and m-methoxyglucotropaeolin. Because glucosinolates and their derived products have received increasing attention due to their biological activities, the occurrence of glucosinolate degradation products in the hexane extract was also investigated, and benzylisothiocyanate and its m-methoxy derivative were isolated. The two glucosinolates were semiquantified by HPLC, and benzylisothiocyanate was semiquantified by GC/MS. The methanol extract of maca tuber also contained (1R,3S)-1-methyltetrahydro-beta-carboline-3-carboxylic acid, a molecule which is reported to exert many activities on the central nervous system.

Ocimum sanctum Linn. (Holy Basil) ethanolic leaf extract protects against 7,12-dimethylbenz(a)anthracene-induced genotoxicity, oxidative stress, and imbalance in xenobiotic-metabolizing enzymes.

August 6, 2010 by  
Filed under All, Herbs, Science

The following information clearly states the effectiveness of Holy Basil in reducing the extent of lipid and protein oxidation and up-regulating antioxidant defenses.

The present study was designed to evaluate the protective effects of ethanolic Ocimum sanctum leaf extract against 7,12-dimethylbenz[a]anthracene (DMBA)-induced genotoxicity, oxidative stress, and imbalance in xenobiotic-metabolizing enzymes. Four different concentrations of ethanolic O. sanctum leaf extract (100, 200, 300, and 400 mg/kg of body weight) were administered to Wistar rats by intragastric intubation for five consecutive days followed by intraperitoneal injection of DMBA (35 mg/kg of body weight) 90 minutes after the final dose of the extract. Administration of DMBA increased bone marrow micronuclei, phase I enzymes, lipid peroxidation, and protein carbonyl formation. This was accompanied by a significant decrease in the activities of phase II detoxification enzymes and antioxidants in the liver, erythrocytes, and bone marrow. Pretreatment with ethanolic O. sanctum leaf extract at a concentration of 300 mg/kg of body weight significantly reduced micronuclei formation and phase I enzymes as well as lipid and protein oxidation with enhanced antioxidant and phase II enzyme activities. The results of the present study suggest that ethanolic O. sanctum leaf extract inhibits DMBA-induced genotoxicity and oxidative stress by modulating xenobiotic-metabolizing enzymes, reducing the extent of lipid and protein oxidation and up-regulating antioxidant defenses.